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Abstract. We present the quantum mechanical description of an elliptic billiard which 
rotates with angular velocity perpendicular to the billiard table. The single particle levels 
in the rotating frame are evaluated by diagonalisation in the elliptic coordinate basis and 
the dynamic moment of inertia of the many-particle system is studied as a function of the 
angular velocity. The irregularities in the behaviour of the moment of inertia are associated 
with the chaotic dynamics of the classical system. 

In recent years, much work has been devoted to investigating if quantum systems, that 
are chaotic in the classical limit, exhibit some peculiar behaviour that can be understood 
as quantum chaos. In other words: how does the stochastic behaviour of a classical 
system manifest in the quantum version of it? 

Most of this work has been orientated to the study of the energy spectrum of 
different integrable and non-integrable Hamiltonians [ 11. Even when a precise Hamil- 
tonian is unknown, the nuclear many-body problem can also contribute to answer the 
question. For example, the close agreement between fluctuations of nuclear levels and 
predictions of the random matrix theory suggests that the nucleus is a chaotic system, 
at least at excitation energies of several MeV [2]. Very little is known, however, about 
other macroscopic magnitudes and observables of quantum many-body systems which 
are expected to illuminate the problem. 

In this letter we deal with the problem of non-interacting particles confined to a 
hard two-dimensional elliptic box (elliptic billiard) which rotates with angular velocity 
w perpendicular to the billiard table. We are going to focus our attention on the 
dynamic moment of inertia of such a many-particle system. As we will see, the 
non-integrability of the system will manifest through irregularities in the behaviour of 
this magnitude. Such irregularities have been interpreted as changes in the nuclear 
structure when the rotational velocity w of the nucleus increases leading to the 
phenomenon called ‘backbending’ [3]. The present model retains the basic features 
of the mean field descriptions for defoimed axially symmetric nuclei such as cranked 
Hartree-Fock or cranked Nilsson formalisms [4]. We are thus in the position of using 
it as a tool to investigate this phenomenon from an alternative perspective. 

Let us first recall some of the results of the quantum static elliptic billiard ( w  = 0) 
[ 5 , 6 ] .  The problem is well known to be separable in elliptic coordinates. The single- 
particle wavefunctions can be factorised in the following way 

%1(S, 77) = %e(Eq1(5)S(Eq1(77) ( 1 )  
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where Be',qL(() and SEb(7) are first-kind radial and angular Mathieu functions of the 
elliptic coordinates 6 and 7. Besides the energy E, the eigenfunctions are also charac- 
terised by 6, the eigenvalue associated with the conservation in classical mechanics of 
I ,  - 1 2 ,  where I , ( I , )  is the angular momentum with respect to the focus at x = +c(-c). 
The index ( a )  indicates the y-parity of the Mathieu wavefunction. Alternatively, we 
can label the basis eigenfunctions as 9:,),,(&, 7) where ne and n,, account for the 
number of nodes in the pseudo-radial variable 5 and in the pseudo-angular variable 
7, respectively. If n, is an even number then the functions correspond to x-symmetric, 
y-symmetric +,)) states if a =even or to x-antisymmetric, y-antisymmetric 

+ , )and  I+.;, -,)states. 
As is well known, the level spectrum of this system exhibits many crossings when it 
is studied as a function of p ( p  = a / b ,  a and b being the major and minor axes). 

Suppose now that the billiard table rotates. As long as the potential V is time 
dependent, the same holds for the Lagrangian and the energy. However, working in 
the rotating frame, the Hamiltonian (which is no longer the energy) is time independent 
and we can solv: the $me-independent Schrodinger equation h*'"'T = ~("'9, where 
we havecefined h" = ho-wl ,  which is usually called the Routhian. ho= - ( f i2 /2m)V2  
and - w l ,  account for the Coriolis and centrifugal forces. The last term breaks the 
time reversal symmetry but commutes with the operator $ = Fx @, , where FX and $, 
are the x-parity and y-parity operators with eigenvalues rX and T,  respectively. The 
matrix that has to be diagonalised can be reduced to two blocks associated with a 
quantum number U = nX ny which is conserved (in nuclear physics U can be asso5iated 
with the signature of the state). In the coordinate representation the operator I ,  can 
be written 

-,)) states if a =odd. For odd values of n, we obtain 

1 -ifi a 
I ,  = {sin 2 v G + s i n   COS^' U - cos2 U )  

where we have used the transformations 6 = cosh U and 7 = cos U. By using the Bessel 
and Fourier expansions of the Mathieu functions the matrix elements can be evaluated 
in the elliptical basis (1). A little algebra allows us to show that I++) states can only 
be connected with I--) states (i.e. (++1f21++) = (--If,/--) = 0) and the I+-) states 
only connect with the I-+) ones (the x and y subscripts have been dropped). 

The diagonalisation procedure was carried out for each U using a truncated basis 
which includes the first 100 states and the accuracy of the calculation was verified by 
diagonalising an extended matrix of 150 basis states. Figure 1 displays the spectrum 
that has been obtained for U = 1 and a deformation parameter p = 2.2. These are 
dimensionless energies and we have also defined a dimensionless frequency 6 = 
wmRi/ h. The area A = T R ~  = nab has 5een set constant. The non-integrability of the 
system is reflected in the presence of multiple repulsions (avoided crossings) and the 
spectrum is similar to that recently obtained in [7] where a circular billiard rotates 
about a point on its edge. 

To study the many-particle system weAassume th:t each :ingle parti$e level can 
be occupied by two particles. Defining H o = 2  h? and L, = 2  Z,*i, I,, we obtain 
the total Routhian f iw = f i 0  - w i z  with eigenvalues E e )  = 2 E:, E:" ' .  Thus, the ground 
state of a system with 2 N  particles is obtained by filling the N lowest levels. We are 
interested in the dynamic moment of inertia per nucleon defined as [3] 

(-1) a2E 
3 = = 2 .  
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Figure 1. ( a )  Dimensionless single particle energies E = 2mEab/ h2 for the rotating elliptic 
billiard as a function of the dimensionless angular velocity (5 = "ab/ h. Only the D = 1 
states are drawn. The 27th level is distinguished by a broken curve. ( b )  Detail of ( a )  
corresponding to the Fermi level. 

We are going to study the dependence of ;F as a function of the angular velocity for 
fixed deformations p. The second-order derivative is evaluated numerically through 

" -  2N (3)  

with Aw = 0.01 h / m R : .  In order to remove the singularities associated with the true 
crossings, between states with different signature, we evaluate ( 3 )  for each signature. 
We performed the calculation for the 27 lowest levels with (+ = + I .  As displayed in 
figure 2 the sum of the single particle curvatures is negative leading to positive values 
of the moment of inertia. As a function of w, the level curvatures vary slowly except 
for frequencies in the vicinity of w = w,,,,,,,,, at which an avoided crossing occurs and 
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an abrupt change takes place. The peaks in the moment of inertia appear when the 
Fermi level participates as the lowest level of an avoided crossing. In these cases, this 
state contributes to the sum of (3) with a great negative value which is not cancelled 
by the positive contribution of the next unfilled level (see figure l (b) ) .  

Figure 2. Dimensionless dynamic moment of inertia per nucleon f = ?/ mab as a function 
of w. 

Such behaviour of the moment of inertia has frequently been observed in the 
excitation of high spin states of nuclear rotational bands. It has been called the 
backhending phenomenon. A difference, however, has to be remarked upon. In nuclear 
experiments or calculations, the physical observable is the angular momentum of the 
nucleus, and w is introduced through a Legendre transformation. For the rotating 
elliptic billiard that we present here, the angular velocity w is instead the relevant 
non-integrability parameter. 

It is interesting to note how the large fluctuations of the dynamic moment of 
inertia-a quantum observable-can be associated with chaotic zones of the classical 
phase space, at least for slow rotations. As shown in [8], in this low w condition, the 
Poincar6 sections display essentially the same structure as the integrable non-rotating 
case [9], except in the vicinity of a broken separatrix, where a strongly chaotic region 
occurs. This separatrix distinguishes, in the integrable case, the motion that takes place 
between the two foci ( I ,  - l2 < 0) of that outside of the two foci ( I ,  - l2 > 0). We have 
evaluated the expectation values of I ,  - l2 for the Fermi level (the 27th level) as a 
function of w in the vicinity of the first avoided crossing (wav.cross. = 1.76). We found 
that for w values smaller than w,,,,,,,,. , the expectation value is ( I ,  - 12)  < 0 and changes 
sign for w > wav.cross. . The region near the avoided crossing classically corresponds to 
the separatrix (and chaotic) region. For greater values of w at which other avoided 
crossings occur, the structure of the classical dynamics in the phase space becomes 
completely different and the separatrix region, which corresponds to I ,  - f2 - 0 disap- 
pears. 
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The present work shows an effect which is a rotational analogue to the elliptic 
billiard in a uniform magnetic field studied by Nakamura and Thomas [ 101 who have 
related the large fluctuations of the diamagnetic susceptibility with the non-integrability 
of the system. However, the present system is ‘paramagnetic’ rather than ‘diamagnetic’ 
according to the positive moments of inertia. In fact, the analogy between rotating 
systems and paramagnetism has been well established by Larmor’s theorem [ 111 and 
the equivalence between the moment of inertia and the diamagnetic susceptibility is 
clear in the perturbative expressions of Inglis [12] and Van Vleck [13]. 

The backbending phenomenon is currently well understood from a nuclear structure 
standpoint and can qualitatively and quantitatively be described by mean field formal- 
isms. In this paper we stress that behind any such quantum many-body descriptions 
underlies a chaotic behaviour of the corresponding classical Hamiltonian. In the 
present example such behaviour is introduced through the Coriolis term which couples 
the single particle degrees of freedom with the collective motion, simulated by the 
rotation of the billiard table. An additional important fact is that a macroscopic 
quantum magnitude is reflecting the chaotic dynamics. We recall that such manifes- 
tations of quantum chaos ‘do not show up easily, neither in the spectrum nor in the 
analysis of the wavefunctions of quantum chaotic systems. In conclusion we suggest 
that in a realistic three-dimensional case the irregularities in the behaviour of the 
moment of inertia can be associated with the non-integrability and the chaotic dynamics 
of the motion of the independent particles inside a rotating nuclear potential well. 

We are indebted to Dr R P J Perazzo for useful comments and suggestions. We also 
acknowledge the fruitful discussions with Drs P Leboeuf and M Saraceno. This work 
was partially supported by the Consejo Nacional de Investigaciones Cientificas y 
Tecnicas, Argentina. 
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